12 research outputs found

    Particle Filtering for Stochastic Navier–Stokes Observed with Linear Additive Noise

    Get PDF
    We consider a nonlinear filtering problem whereby the signal obeys the stochastic Navier–Stokes equations and is observed through a linear mapping with additive noise. The setup is relevant to data assimilation for numerical weather prediction and climate modeling, where similar models are used for unknown ocean or wind velocities. We present a particle filtering methodology that uses likelihood-informed importance proposals, adaptive tempering, and a small number of appropriate Markov chain Monte Carlo steps. We provide a detailed design for each of these steps and show in our numerical examples that they are all crucial in terms of achieving good performance and efficiency

    Particle filtering for stochastic Navier-Stokes signal observed with linear additive noise

    No full text
    We consider a non-linear filtering problem, whereby the signal obeys the stochastic Navier-Stokes equations and is observed through a linear mapping with additive noise. The setup is relevant to data assimilation for numerical weather prediction and climate modelling, where similar models are used for unknown ocean or wind velocities. We present a particle filtering methodology that uses likelihood informed importance proposals, adaptive tempering, and a small number of appropriate Markov Chain Monte Carlo steps. We provide a detailed design for each of these steps and show in our numerical examples that they are all crucial in terms of achieving good performance and efficiency

    The Immune Functions of the Spleen

    No full text
    corecore